Demographic Analysis

Age and Sex Structure

The Population Pyramid as an Historical Record and a Tool for Demographic Analysis

Age-Sex Structure

For further reading, see Chapter 2 of the Census Bureau's

Population Analysis with Microcomputers

which provides more details about the importance of age-sex data, techniques for checking data for consistency, and methods for correcting for age misreporting.

MICROCOMPUTERS Volume I PRESENTATION OF TECHNIQUES By

POPULATION ANALYSIS

EDUARDO E. ARRIAGA

With associates:

WITH

PETER D. JOHNSON, Software Associate ELLEN JAMISON, Editorial Associate

U.S. Census Bureau

November 1994 (Revised September 2003)

Age and Sex Structure: The Population Pyramid

Outline of this session -

- Population pyramid
 - Definition
 - What can it tell us—a critical tool for demographic analysis
- Demographic transition
- Stable and stationary population
- Age, period, and cohorts perspectives

What is a "Population Pyramid" ?

 A graphical depiction of current population structure, by age and sex

Key Components of a Population Pyramid

What does a Population Pyramid Tell Us?

Size

- Age groups by sex
- Shape
 - Age-sex distribution
 - Migration
 - War deaths
 - Population aging and dependency ratio
 - Fertility
 - Mortality Demographic Transition
 - Population growth
 - History and the future!

Population (in thousands)

Age Group

Population (in thousands)

Source: U.S. Census Bureau, International Database.

http://www.census.gov/population/international/data/idb/region.php?N = %20 Results%20 & T = 12 & A = separate & RT = 0 & Y = 2005 & R = -1 & C = LA & A = separate & RT = 0 & Y = 2005 & R = -1 & C = LA & A = separate & RT = 0 & Y = 2005 & R = -1 & C = LA & A = separate & RT = 0 & Y = 2005 & R = -1 & C = LA & A = separate & RT = 0 & Y = 2005 & R = -1 & C = LA & A = separate & RT = 0 & Y = 2005 & R = -1 & C = LA & A = separate & RT = -1 & R = -1 & R

- Wide base -> High fertility
- Triangle shape -> High population growth
- "Young" population
 - Large % of population at younger ages

Population (in millions)

Age Group

Population (in millions)

- Narrow base -> Low fertility
- Low population growth
- Women live longer than men
- Population aging

High dependency ratio

Population Aging vs. Aging of an Individual

Population Aging

- Based on population age structure
- A shift in the distribution of a country's population towards older ages

VS.

Individual Aging

- Based on life course of each person
- Individuals will age whether the population they live in is getting older or younger

Source: U.S. Census Bureau, International Database.

http://www.census.gov/population/international/data/idb/region.php?N=%20Results%20&T=12&A=separate&RT=0&Y=2005&R=-1&C=JA

Dependency Ratios

The ratio between those at less economically productive ages and those at more productive ages:

Youth Dependency: e.g. ages 0-14 vs. 15-64

Old Age Dependency: e.g. ages 65+ vs. 15-64

Total Dependency: Youth Dependency + Old Age Dependency e.g., ages 0-14 +& 65+ vs. 15-64

Dependency ratios are critical tools for decisions on allocation of resources:

- Child immunizations
- Education (schools, teachers)
- Medical care for older population
- Retirement benefits
- Other

Limitations of dependency ratios:

- Some people at the dependent ages actually contribute (e.g. older children care for elders, and vice versa; elders also may work)
- Some people at peak work ages may themselves be dependent on others

- Narrow base -> Low fertility
 - Low population growth
- Women live longer than men
- Population aging
- High dependency ratio
- Baby boom
- Baby boom echo effect

Source: U.S. Census Bureau, International Database.

http://www.census.gov/population/international/data/idb/region.php?N = %20 Results%20 & T = 12 & A = separate & RT = 0 & Y = 2005 & R = -1 & C = JA & C =

Source: U.S. Census Bureau, International Database.

http://www.census.gov/population/international/data/idb/region.php?N = %20 Results%20 & T = 12 & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & C = JA & A = separate & RT = 0 & Y = 2030 & R = -1 & RT = 10 & RT =

Population (in thousands)

Age Group

Population (in thousands)

 More men in prime working ages—male migrants

- Jordan 1990 to 2015
- Jordan 2016 to 2040
- Libya 1990 to 2015
- Libya 2016 to 2040

What does a Population Pyramid Tell Us?

Size

- Age groups by sex
- Shape
 - Age-sex distribution
 - Migration
 - War deaths, famines
 - Baby busts or booms
 - Population aging and dependency ratio
 - Fertility
- **Demographic Transition**
- Mortality
- Population growth
- History and the future!

Demographic Transition

The shift from high birth and death rates to lower rates is known as the *demographic transition*.

https://commons.wikimedia.org/wiki/File:Stage5.jpg

DEMOGRAPHIC CHANGE, SWEDEN, 1735-2000

"Demographic change in Sweden 1735-2000". Licensed under CC BY 2.5 via Commons -

https://commons.wikimedia.org/wiki/File:Demographic_change_in_Sweden_1735-2000.png#/media/File:Demographic_change_in_Sweden_1735-2000.png

Demographic Transition

The key result of the demographic transition can be seen in the age structure of the population, which looks less like a *pyramid*, and more like a *rectangle*.

Examples of the "rectangularization" of age structure over time ...

From Pyramid to Rectangle: Age-Sex Structure in the United States, 1900, 1940, 1960, 1980, 2000 (from Population Reference Bureau Chart)

Stable and Stationary Population

Stable population

- Birth and death rates have stayed constant for a very long time
- Population size may change
- The resulting *shape* of the pyramid will not change, although it may grow (or shrink) over time.

Stationary population

- A special case of a stable population
- Birth and death rates are equal.
- Population growth rate = 0
- The shape and size of the pyramid will be constant.

Several demographic methods rely on the assumption that a population is stable -which implies that relative size of one age group to another **does not change over** *time*.

Period vs. Cohort: Concept of Time in Demography

- Calendar time
- Personal time (age)

We age one year in one year of time

Period vs. Cohort: Lexis Diagram

34

Period vs. Cohort: Lexis Diagram

Cohort

- A group of people sharing a particular statistical or demographic characteristic
 - The relationship between time and age is the same
 - Born at the same time and go through life aging together

Period vs. Cohort: Lexis Diagram

37

Age, Period, and Cohort Perspectives

Tabular depictions ...

MEXICAN FEMALES, 1975-2000

Age	1975	1980	1985	1990	1995	2000
Total, All Ages	29,754	35,240	41,557	48,697	56,505	64,789
0-4	5,336	6,187	7,092	7,980	8,733	9,330
5-9	4,606	5,265	6,118	7,029	7,921	8,679
10-14	3,903	4,587	5,245	6,100	7,011	7,903
15-19	3,139	3,889	4,572	5,231	6,086	6,997
20 - 24	2,584	3,122	3,870	4,553	5,213	6,067
25-29	2.061	2,565	3,099	3,846	4,530	5,189
30-34	1.686	2,041	2,542	3,076	3,821	4,504
35-39	1.391	1.663	2,015	2,514	3,046	3,788
40-44	1.161	1.366	1,636	1,985	2,480	3,009
4549	972	1,135	1,337	1,603	1,949	2,439
50-54	791	942	1,102	1,300	1,562	1,902
55-59	588	576	901	1,056	1,250	1,505
60-64	469	548	706	845	994	1,179
65-60	411	421	494	640	768	907
0J~~03 7074	310	350	359	424	552	665
75 and over	345	405	467	514	590	725

 \mathbf{r}

MEXICAN FEMALES, 1975-2000

Age	1975	1980	1985	1990	1995	2000	
Total, All Ages	29.754	35,240	41,557	48,697	56,505	64,789	
0-4	5.336	6.187	7,092	7,980	8,733	9,330	
59	4.606	5.265	6,118	7,029	7,921	8,679	
10-14 Period	3,903	4.587	5,245	6,100	7,011	7,903	
15-19	3,139	3.889	4,572	5,231	6,086	6,997	
20 - 24	2.584	3.122	3,870	4,553	5,213	6,067	
25 29	2,061	2.565	3,099	3,846	4,530	5,189	
20-34	1,686	2.041	2.542	3,076	3,821	4,504	
35	1 391	1.663	2.015	2,514	3,046	3,788	Cohor
40-44	1.161	1.366	1.636	1,985	2,480	3,009	
40 - 44	972	1 1 3 5	1.337	1,603	1,949	2,439	
43-43 Age	791	942	1,102	1,300	1,562	1,902	
50-54	588	576	901	1.056	1.250	1,505	
55-59 60 6X	160	548	706	845	994	1,179	
65 60	405	421	494	640	768	907	
20 74	210	350	359	424	552	665	
7074 75 and over	345	405	467	514	590	725	

с. г

Some Unusual Age-Sex Structures

And what causes them to look that way??

What country am I?

Male

Female

Census Bureau

What country am I?

Source: U.S. Census Bureau, International Database.

http://www.census.gov/population/international/data/idb/region.php?N=%20Results%20&T=12&A=separate&RT=0&Y=2005&R=-1&C=SA

What kind of place am I?, 2005

Number in thousands

Age Cohort

A Mythical "College Town" USA - 2005

Number in thousands

Age-sex structure can be depicted:

- At various geographic levels (country, state, and other sub-national levels)
- Among populations with particular characteristics - a few examples:
 - Literate
 - Workers
 - Deceased

Source: Census of India, ORGI

Illiterate Rural Population in Delhi, 2001

Source: Census of India, ORGI

Deaths in Brazil, 2012

Exercises

- Create population pyramids using PAS: PYRAMID.xls
- Use data from your country
- Optional:
 - NewPAS: Pyr2.xls (doubles your fun!)
 - Compare population pyramid of your country to another country
 - Compare population pyramid of one region in your country to another region

