Demographic Analysis

Mortality:

The Life Table

Its Construction and Applications

census.gov

Mortality: Introduction

What is a life table?

A table that displays the life expectancy and the probability of dying at each age (or age group) for a given population, according to the age-specific death rates prevailing at that time. The life table gives an organized, complete picture of a population's mortality.

Source: Population Reference Bureau, Glossary of Demographic Terms, http://www.prb.org/Publications/Lesson-Plans/Glossary.aspx
U.S. Department of Commerce

Mortality: Introduction

What is a life table?

A table that displays the life expectancy and the probability of dying at each age (or age group) for a given population, according to the age-specific death rates prevailing at that time. The life table gives an organized, complete picture of a population's mortality.

Source: Population Reference Bureau, Glossary of Demographic Terms, http://www.prb.org/Publications/Lesson-Plans/Glossary.aspx
U.S. Department of Commerce

Mortality: Introduction

In this session, we will examine the key components of the life table - a critical tool in demographic analysis

- Age-specific deaths rates (from deaths and population)
- Conversion of rates into probabilities or age-specific mortality rates based on "separation factors"
- Implied survival proportions from a hypothetical birth cohort $(100,000)$
- Total years lived by that cohort at each age
- Life expectancy at birth (and at other ages)

Life Table Construction: From ${ }_{\mathrm{n}} \mathrm{M}_{\mathrm{x}}$ to e_{x}

x	n	${ }_{\mathrm{n}} \mathrm{M}_{\mathrm{x}}$	${ }_{n}{ }^{\text {x }}$	${ }_{n} q_{\text {x }}$	I_{x}	${ }_{\mathrm{n}} \mathrm{d}_{\mathrm{x}}$	${ }_{n} L_{\text {x }}$	${ }_{5} \mathrm{P}_{\mathrm{x}}$	T_{x}	e_{x}
0	1	0.1072	0.33	0.1000	100000	10000	93300	0.901	5630649	56.3
1	4	0.0034	1.56	0.0135	90000	1219	357023	0.983	5537349	61.5
5	5	0.0010	2.50	0.0049	88781	438	442809	0.996	5180326	58.3
10	5	0.0007	2.50	0.0037	88343	324	440903	0.994	4737517	53.6
15	5	0.0017	2.50	0.0084	88019	741	438242	0.988	4296614	48.8
20	5	0.0030	2.50	0.0147	87278	1283	433182	0.984	3858372	44.2
25	5	0.0036	2.50	0.0181	85995	1553	426092	0.978	3425190	39.8
30	5	0.0054	2.50	0.0268	84442	2266	416545	0.973	2999097	35.5
35	5	0.0054	2.50	0.0266	82176	2187	405411	0.952	2582553	31.4
40	5	0.0146	2.50	0.0705	79989	5635	385856	0.934	2177141	27.2
45	5	0.0128	2.50	0.0619	74354	4601	360265	0.907	1791286	24.1
50	5	0.0269	2.50	0.1262	69752	8802	326756	0.895	1431020	20.5
55	5	0.0170	2.50	0.0817	60950	4978	292305	0.864	1104264	18.1
60	5	0.0433	2.50	0.1954	55972	10935	252521	0.816	811959	14.5
65	5	0.0371	2.50	0.1699	45036	7651	206056	0.758	559439	12.4
70	5	0.0785	2.50	0.3281	37386	12266	156264	0.652	353383	9.5
75	5	0.0931	2.50	0.3775	25120	9483	101893	0.569	197119	7.8

Life Expectancy

- Expectation of further life beyond age x
- The average number of additional years a person could expect to live if current mortality trends were to continue for the rest of that person's life.
- Most common: life expectancy at birth or e_{0}
- Why would this be a useful measure?

1. Age-specific Death Rates

We start the calculation of the life table with age-specific death rates, ${ }_{n} \mathrm{M}_{\mathrm{x}}$

Age-specific central death rates are calculated as the number of deaths in a particular age group - typically during a year - per 1,000 population in that same age group (best measured at midyear):

$$
{ }_{n} M_{x}={ }_{n} D_{x} /{ }_{n} P_{x}
$$

What is the ${ }_{5} \mathrm{M}_{10}$?

Age Group	Male Deaths	Male Population
0	57,200	$1,260,897$
$1-4$	18,526	$6,005,011$
$5-9$	9,005	$8,730,750$
$10-14$	6,400	$8,284,907$
$15-19$	8,358	$6,603,607$

Source: 2011 Bangladesh Census of Population and Housing

2. Probability of Dying $-{ }_{n} q_{x}$

- Probability of dying within an interval of length n that starts at age x and ends at age $\mathrm{x}+\mathrm{n}$

2. Probability of Dying $-{ }_{n} q_{x}$

A probability requires calculation of an appropriate population "at risk" for a certain event (in this case, a death).

To calculate probability of dying within a certain age interval, those at "at risk" of dying include:

1. Those who survived the interval (e.g. those counted in a census at the next age interval)
2. Those who died during the interval

Such probabilities can be calculated from age-specific death rates based on "separation factors" ...
U.S. Department of Commerce

2. Probability of Dying $-{ }_{n} q_{x}$

$$
\begin{aligned}
& \text { Probability of dying between exact ages: }{ }_{n} q_{x} \\
& \text { In symbols: } \\
& \qquad{ }_{n} q_{x}=\frac{n{ }_{n} M_{x}}{1+\left(n-{ }_{n} k_{x}\right)}{ }_{n} M_{x}
\end{aligned}
$$

Where:

```
n}\mp@subsup{M}{x}{}\quad\mathrm{ is the age-specific death rate for ages
    x to }x+n\mathrm{ ; and
nkx is the separation factor of deaths for
    ages x to x+n.
```


2. Probability of Dying $-{ }_{n} q_{x}$

```
Probability of dying between exact ages: nqx
In symbols:
\[
{ }_{n} q_{x}=\frac{n{ }_{n} M_{x}}{1+\left(n-{ }_{n} k_{x}\right)}{ }_{n} M_{x}
\]
```

Where:

$$
\begin{aligned}
& { }_{n} M_{x} \text { is the age-specific death rate for ages } \\
& x \text { to } x+n \text {; and }
\end{aligned}
$$

$$
{ }_{n} k_{x} \quad \text { is the separation factor of deaths for }
$$

$$
\text { ages } x \text { to } x+n
$$

3. Separation Factors ${ }_{\mathrm{n}} \mathbf{k}_{\mathrm{x}}$

The "separation factor" is the average number of years lived during an age interval by persons who die within that age interval.

- For most age groups, set to n/2 (or 2.5 if using 5-year age groups)
- Different for youngest (ages 0, 1-4) and oldest ages (open ended age group)

Separation Factors at Youngest and Oldest Ages

However, at very young and very old ages, the likelihood of death within a given interval is not the same.

For instance, during infancy, the risk of death is especially high during the first month. Thus, for example, from birth to age 1, a separation factor of 0.33 would indicate that, on average, infants who died had lived for $1 / 3$ of a year (or four months).

Problem with the open ended age interval

- Can't take n/2.
- Generally use $1 /{ }_{\infty} \mathrm{Mx}$

Now let's calculate ${ }_{\mathrm{n}} \mathrm{q}_{\mathrm{x}}$

Age	n	nMx	nax	nqx
10	5	0.00077	2.500	0.00386
15	5	0.00127	2.500	
20	5	0.00114	2.500	0.00570
25	5	0.00116	2.500	0.00578
30	5	0.00135	2.500	
35	5	0.00187	2.500	0.00931

Difference between nMx and nqx

- Time interval
- At most ages, ${ }_{n} q_{x}$ will be about n times that of ${ }_{n} M_{x}$.
$-{ }_{n} q_{x}$ are measured across an n-year age span
$-{ }_{n} M_{x}$ indicate average rate of death at each year in the span
- Denominator
$-{ }_{n} M_{x}$: the denominator of the death rate is based on midyear counts of survivors,
$-{ }_{n} q_{x}$: the denominator is based on those starting an age
interval

Infant Mortality Rate (IMR) - a special case

For infants, those "at risk" of dying consist of births. When vital registration data are available, the infant mortality rate is thus often calculated as the ratio of the number of deaths of infants under 1 year of age $\left(\mathrm{D}_{0}\right)$ to the number of live births occurring that year (B), times 1,000,
$D_{0} / B * 1,000$.

```
For example, the IMR for Chile in 1986 is
obtained as follows:
    (5,220 / 272,997) x 1,000 = 19.12
(infant
deaths) (births)
There were 19 infant deaths per 1,000
live births in Chile in 1986.
```

USAID

Life Table Construction: ${ }_{n} q_{x}$

x		${ }_{\mathrm{n}} \mathrm{M}_{\mathrm{x}}$	$\mathrm{n}^{\mathrm{k}_{\mathrm{x}}}$	${ }^{19}{ }^{\text {x }}$	I_{x}	${ }_{n} \mathrm{~d}_{\mathrm{x}}$	${ }^{2} L_{x}$	${ }_{5} \mathrm{P}_{\mathrm{x}}$	T_{x}	e_{x}
0	1	0.1072	0.33	0.1000	100000	10000	93300	0.901	5630649	56.3
1	4	0.0034	1.56	0.0135	90000	1219	357023	0.983	5537349	61.5
5	5	0.0010	2.50	0.0049	88781	438	442809	0.996	5180326	58.3
10	5	0.0007	2.50	0.0037	88343	324	440903	0.994	4737517	53.6
15	5	0.0017	2.50	0.0084	88019	741	438242	0.988	4296614	48.8
20	5	0.0030	2.50	0.0147	87278	1283	433182	0.984	3858372	44.2
25	5	0.0036	2.50	0.0181	85995	1553	426092	0.978	3425190	39.8
30	5	0.0054	2.50	0.0268	84442	2266	416545	0.973	2999097	35.5
35	5	0.0054	2.50	0.0266	82176	2187	405411	0.952	2582553	31.4
40	5	0.0146	2.50	0.0705	79989	5635	385856	0.934	2177141	27.2
45	5	0.0128	2.50	0.0619	74354	4601	360265	0.907	1791286	24.1
50	5	0.0269	2.50	0.1262	69752	8802	326756	0.895	1431020	20.5
55	5	0.0170	2.50	0.0817	60950	4978	292305	0.864	1104264	18.1
60	5	0.0433	2.50	0.1954	55972	10935	252521	0.816	811959	14.5
65	5	0.0371	2.50	0.1699	45036	7651	206056	0.758	559439	12.4
70	5	0.0785	2.50	0.3281	37386	12266	156264	0.652	353383	9.5
75	5	0.0931	2.50	0.3775	25120	9483	101893	0.569	197119	

4. Survivors at exact age $x: I_{x}$

The next life table function to be calculated is the number of persons surviving to each exact age, or I_{x}
I_{0} is called the radix and usually starts with 100,000 births (at exact age 0).

The number of survivors from birth to each exact age is obtained using the probabilities; ${ }_{n} q_{x}$, as estimated above.

4. Survivors at exact age $x: I_{x}$

```
Survivors at exact age x, lo
In symbols:
\[
l_{x+n}=l_{x} \quad\left(1-{ }_{n} q_{x}\right)
\]
```

Where:
${ }_{n} q_{x}$ is as defined above; and

The first l_{x} is l_{0} and usually is defined as 100,000.

Life Table Construction: I_{x}

Figure III-3. Selected Life Table Functions

Let's calculate Ix

x	n	$n M x$	nax	nqx	Ix	$l_{1}=96,630$${ }_{0}=94,955$
-						
0	1	0.03471	0.139	0.03370	100,000	
1	4	0.00309	1.757	0.01226		
5	5	0.00103	2.500	0.00514	95,446	
10	5	0.00077	2.500	0.00386		
15	5	0.00127	2.500	0.00631	94,589	
20	5	0.00114	2.500	0.00570	93,992	
25	5	0.00116	2.500	0.00578	93,456	
30	5	0.00135	2.500	0.00673	92,916	

U.S. Department of Commerce

5. Life table deaths: ${ }_{\mathrm{n}} \mathrm{d}_{\mathrm{x}}$

Since I_{x} represents the number of persons alive at each exact age x , the difference between two consecutive values (for example, I_{x} and $\mathrm{I}_{\mathrm{x}+\mathrm{n}}$) represents the number of deaths between the corresponding ages (x and $\mathrm{x}+\mathrm{n}$, in this case). This number of deaths between two exact ages is symbolized by ${ }_{n} \mathrm{~d}_{\mathrm{x}}$ in the life table.

Life Table Construction: ${ }_{n} d_{x}$

```
Deaths between two exact ages: ndx
In symbols:
    ndx}=\mp@subsup{l}{x}{}-\mp@subsup{l}{x+n}{
Where:
lx
```


Let's calculate ${ }_{\mathrm{n}} \mathrm{d}_{\mathrm{x}}$

x	n	nMx	nax	nqx		lx
n	ndx					
-	-	-				
0	1	0.03471	0.139	0.03370	100,000	3,370
1	4	0.00309	1.757	0.01226	96,630	1,184
5	5	0.00103	2.500	0.00514	95,446	491
10	5	0.00077	2.500	0.00386	94,955	
15	5	0.00127	2.500	0.00631	94,589	597
20	5	0.00114	2.500	0.00570	93,992	536
25	5	0.00116	2.500	0.00578	93,456	
30	5	0.00135	2.500	0.00673	92,916	625

U.S. Department of Commerce

6. Person Years Lived: ${ }_{n} \mathrm{~L}_{\mathrm{x}}$

The total number of years that the single cohort of 100,000 would live between two specific ages, x to $\mathrm{x}+\mathrm{n}$.

Area under the lx curve

Life Table Construction: I_{x}

Figure III-3. Selected Life Table Functions

6. Person Years Lived: ${ }_{n} L_{x}$

The ${ }_{n} L_{x}$ function can be computed as the sum of personyears lived by those that survive to age $x+n$ and the person-years lived by those that die between those ages:

$$
{ }_{n} L_{x}=n * I_{x+n}+{ }_{n} k_{x}{ }^{*}{ }_{n} d_{x}
$$

Let's Calculate ${ }_{n} L_{x}$

X			$n \mathrm{Mx}$	nkx	$n q x$	Ix	$n d x$	$n L x$	
-			-		- -	- -		-	
0			0.03471	0.139	0.03370	100,000	3,370	97,100	
1			0.00309	1.757	0.01226	96,630	1,184	383,864	
5			0.00103	2.500	0.00514	95,446	491		,001
10			0.00077	2.500	0.00386	94,955	366	473,859	
15			0.00127	2.500	0.00631	94,589	597	471,452	
20			0.00114	2.500	0.00570	93,992	536	468,620	
25			0.00116	2.500	0.00578	93,456	540		465,930
30			0.00135	2.500	0.00673	92,916		463,017	
35			0.00187	2.500	0.00931	92,291	859	459,307	

7. Person years of life remaining: T_{x}

The person years of life remaining may be calculated by summing all the ${ }_{n} L_{x}$ values

```
Person years of life remaining for ages x and above: }\mp@subsup{\textrm{T}}{\textrm{x}}{
    In symbols:
        Tx}=\mp@subsup{\sum}{i=x}{w}\mp@subsup{n}{n}{W}\mp@subsup{L}{i}{
Where:
n}\mp@subsup{L}{x}{}\quad\mathrm{ is as defined above; and
w represents the oldest age.
```


8. Life Expectancy: e_{x}

- Expectation of further life beyond age x
- The average number of additional years a person could expect to live by those who are alive at each age X.
- The number of years that the life table population will live from age x up to the point when all have died, divided by the number of persons alive at exact age x ,

Life Table Construction: e_{x}

```
Life expectancy at age x: ex
In symbols:
        ex}=\frac{\mp@subsup{T}{x}{}}{\mp@subsup{I}{x}{}
Where }\mp@subsup{T}{x}{}\mathrm{ and }\mp@subsup{l}{x}{}\mathrm{ are as defined above.
```


Let's Calculate e_{x}

| x | n | $n M x$ | $n a x$ | $n q x$ | | lx | ndx | $n L x$ | Tx | ex |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | - | - | - | - | - | | - | - | - | - |
| 0 | 1 | 0.03471 | 0.139 | 0.03370 | 100,000 | 3,370 | 97,100 | $7,558,096$ | 75.58 | |
| 1 | 4 | 0.00309 | 1.757 | 0.01226 | 96,630 | 1,184 | 383,864 | $7,460,996$ | 77.21 | |
| 5 | 5 | 0.00103 | 2.500 | 0.00514 | 95,446 | 491 | 476,001 | $7,077,132$ | 74.15 | |
| 10 | 5 | 0.00077 | 2.500 | 0.00386 | 94,955 | 366 | 473,859 | $6,601,130$ | 69.52 | |
| 15 | 5 | 0.00127 | 2.500 | 0.00631 | 94,589 | 597 | 471,452 | $6,127,272$ | 64.78 | |

Life Table Construction: e,

x		${ }_{n} M_{x}$	${ }_{\mathrm{n}} \mathrm{k}_{\mathrm{x}}$	${ }_{n} q_{\text {x }}$	I_{x}	${ }_{\mathrm{n}} \mathrm{d}_{\mathrm{x}}$	${ }_{n} \mathrm{~L}_{\mathrm{x}}$	${ }_{5} \mathrm{P}_{\mathrm{x}}$	T_{x}	e_{x}
0	1	0.1072	0.33	0.1000	100000	10000	93300	0.901	5630649	56.3
1	4	0.0034	1.56	0.0135	90000	1219	357023	0.983	5537349	61.5
5	5	0.0010	2.50	0.0049	88781	438	442809	0.996	5180326	58.3
10	5	0.0007	2.50	0.0037	88343	324	440903	0.994	4737517	53.6
15	5	0.0017	2.50	0.0084	88019	741	438242	0.988	4296614	48.8
20	5	0.0030	2.50	0.0147	87278	1283	433182	0.984	3858372	44.2
25	5	0.0036	2.50	0.0181	85995	1553	426092	0.978	3425190	39.8
30	5	0.0054	2.50	0.0268	84442	2266	416545	0.973	2999097	35.5
35	5	0.0054	2.50	0.0266	82176	2187	405411	0.952	2582553	31.4
40	5	0.0146	2.50	0.0705	79989	5635	385856	0.934	2177141	27.2
45	5	0.0128	2.50	0.0619	74354	4601	360265	0.907	1791286	24.1
50	5	0.0269	2.50	0.1262	69752	8802	326756	0.895	1431020	20.5
55	5	0.0170	2.50	0.0817	60950	4978	292305	0.864	1104264	18.1
60	5	0.0433	2.50	0.1954	55972	10935	252521	0.816	811959	14.5
65	5	0.0371	2.50	0.1699	45036	7651	206056	0.758	559439	12.4
70	5	0.0785	2.50	0.3281	37386	12266	156264	0.652	353383	9.5
75	5	0.0931	2.50	0.3775	25120	9483	101893	0.569	197119	7.8

Life Table Construction: Survival Ratios

Finally, we have the life table survival ratio, denoted either as ${ }_{5} \mathrm{P}_{\mathrm{x}}$ or ${ }_{5} \mathrm{~S}_{\mathrm{x}}$.

```
Survival ratio: }\mp@subsup{}{5}{}\mp@subsup{\textrm{P}}{\textrm{x}}{}\mathrm{ or }\mp@subsup{}{5}{}\mp@subsup{\textrm{S}}{\textrm{x}}{
    In symbols:
    \mp@subsup{}{5}{}\mp@subsup{P}{x}{}=\frac{\mp@subsup{}{5}{}\mp@subsup{L}{x+5}{}}{\mp@subsup{}{5}{\prime}\mp@subsup{L}{x}{}}
    Where:
    5 L 
```


Life Table Construction: Survival Ratios

For survival from birth to ages 0 to 4 and for the openended age group, we have:

```
Survival ratio from birth to
ages 0 to 4: }\mp@subsup{}{5}{}\mp@subsup{P}{b}{
    \mp@subsup{}{5}{}\mp@subsup{\textrm{P}}{\textrm{b}}{}=\frac{\mp@subsup{}{5}{}\mp@subsup{L}{0}{}}{5\times }\mp@subsup{}{5 (10}{0}
Where:
5 Lo and lo are as defined above.
```

```
Survival ratio of open-ended
age group: P
\[
\mathrm{P}_{\mathrm{w}-5}=\frac{\mathrm{T}_{\mathrm{w}}}{\mathrm{~T}_{\mathrm{w}-5}}
\]
```

Where:

```
T is as defined above; and
w represents the oldest age.
```


Life Table Construction: Survival Ratios

Figure III-3. Selected Life Table Functions

Applications for Life Table Construction

- PAS: LTPOPDTH.xls
- User enters population and deaths by ages
- Allows for alternative infant mortality input
- Allows for smoothing of ${ }_{n} \mathrm{M}_{x}$ values
- MORTPAK: LIFTB
- User enters ${ }_{n} M_{x},{ }_{n} q_{x}$, or ${ }_{n} I_{x}$
- PAS: LTMXQXAD
- User enters ${ }_{n} M_{x}$ or ${ }_{n} q_{x}$
- Allows users to incorporate adjustment factors to correct nMx or nqx

Exercises

- Construct a life table for your country based on population and death data by age using LTPOPDTH.

Exercises

- (Optional) Use another application and compare the results to see why the results may be different.

